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A restricted cell model for hard, parallel squares is presented both in a 
discrete and a continuous version. The model is solved exactly by means of a 
transfer matrix method and the thermodynamic properties are calculated. 
Some correlation functions are also obtained, which show that the long 
range order decays at least as fast as 1/rL 
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1. I N T R O D U C T I O N  

The usual cell model description ~1~ of  the l iquid state has the deficiency of a 
buil t - in crystallike structure due to the geometric regularity with which the 

container  of the system is divided into cells. In a previous pa pe r  ~2~ a cell 
model without this crystal structure was introduced.  The basic idea is to have 
the cell of  a particle defined by neighboring particles. 
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More precisely, the cells of the present model are defined as follows: 
One starts from a close-packed configuration. 2 This configuration is assumed 
to have the ordered structure of  a lattice, and we can assume that each particle 
has well-defined nearest neighbors. When the volume increases, the set of  
nearest neighbors (measured by Euclidean distance) will, in general, depend 
on the configuration. However, the neighboring particles, which define the 
cell of  a particle, shall always be those that were nearest neighbors in the 
close-packed configuration; to distinguish, we shall denote these neighbors as 
topological neighbors (because we, so to speak, use the topology of the regular 
lattice of  the close-packed configuration, rather than the conventional 
topology induced by the Euclidean measure of distance). 

The details of  how the cell of  a particle is defined by the position of its 
topological neighbors may depend on the lattice as well as the type of restric- 
tions imposed by the model in which one is interested. In Section 2 we give 
the details for the case of  hard, parallel squares under the restrictions which 
in Ref. 2 was termed the restricted cell model. In this model the hard core 
condition is always fulfilled, but the accessible part  of phase space is severely 
restricted. In Section 3 we find the thermodynamic properties in the case of  a 
lattice gas. In Section 4 we proceed to the continuum gas for which the 
thermodynamic properties were announced in Ref. 2. Finally, in Section 5 
we calculate some pair correlation functions which are particularly simple to 
calculate in the present case. These correlation functions are of rather limited 
physical significance; however, one can conclude that the long-range correla- 
tion will decay at least as fast as 1/r 2. In a subsequent paper more detailed 
calculations of  correlation functions will appear. 

2. T H E  M O D E L  

We consider a system of hard, parallel squares where each particle has 
four topological neighbors. With a particle and its topological neighbors 
numbered as shown in Fig. 1 and with 2d for the length of the diagonal of  a 
square, the restrictions on the motion are 

Xo > xl + d ;  Xo > x8 + d  

Xo < x 2 -  d; Xo < x ~ -  d 

Yo />Ya + d; Yo />Y~ + d 

Yo ~ < Y l -  d; Yo ~ < Y 2 - d  

(1) 

where the directions of the coordinate axes for convenience have been chosen 
parallel to the diagonals of  the squares. I t  is clear from Eq. (1) that the 

2 This assumes the existence of a hard core; the model can be generalized to softer 
potentials, but this is outside the scope of the present paper. 
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x 

Fig. i. A hard square and 
its topological neighbors. 

restrictions make the x coordinates independent  o f  the y coordinates and 
visa versa. The two sets o f  coordinates can therefore be treated separately, 
and since they are equivalent, it will be sufficient to consider the  x coordinates 
explicitly. We can thus talk about  the topological ar rangement  o f  the particles 
as being in rows parallel to the x axis. Let there be n particles in each row and 
2n' rows and let the area o f  the system be L x L = A. I f  one turned the 
picture 90 ~ and looked at the y coordinates there would be 2n rows with n' 
particles in each. With  this ordering the particles are turned 45 ~ compared  to 
the usual convention, and this introduces a minor  difference between the odd 
and even rows as illustrated in Fig. 2, but  this is easily taken care of. The x 
dependence in the model  can now be solved by a transfer matrix method with 
the transfer in the y direction. The particles in each row are numbered  f rom 
1 to n. Wi th  rigid boundary  conditions imposed, ai1 the centers of  the particles 
are restricted between 0 and L. Let x stand for a coordinate in an odd- 
numbered  row and x '  for the coordinate  in the following even-numbered row 
(or the preceding even-numbered row);  the cell model  restrictions will then be 

0 < xl  ~< x l ' -  d~< x 2 -  2d~< x 2 ' -  3d~< ... 

~< x~ - (2n - 2)d ~< x , '  - (2n - 1)d ~< L - (2n ,- 1)d (2) 

o0d  
e v e n  K 

odd < 
e v e n  

o d d  

e v e n  I 
m 

I m_ x 
L 

Fig. 2. Six rows with n = 4 particles. 
For reason of illustrations the particles 

in a row have the same ordinate. 
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It  is convenient to introduce the following reduced coordinates in 
Eq. (2): 

u, -- x, + (2i - 2)d for  odd rows 
(3) 

v, = x (  - (2i - 1)d for even rows 

The restrictions (2) for  two consecutive rows now read 

0 ~< ul ~< vl ~< u2 ~< v2 4 . ' .  ~< u~ ~< v.~< l (4) 

where 

l = L - ( 2 n -  1)d (5) 

is the free length per row. 

3. THE LATTICE GAS V E R S I O N  

3.1. Def in i t ions 

An obvious way to impose lattice restrictions on the model  is to choose a 
square lattice with the edges parallel to the diagonals o f  the squares, since 
this conserves the independence of  the two coordinate directions which is 
essential for the solubility o f  the model. The length is measured in units o f  the 
lattice constant,  which is chosen so that  d is an integer. With  this convention, 
the reduced coordinates u= are integer and give the number  o f  uncovered 
lattice edges up to the i th particle. 

We can introduce a new set o f  coordinates constructed in such a way 
that  only odd values are used on odd rows and even values on even rows:  

w~= 2u~+ 2 i -  2 + 1 odd rows 
(6) 

w~ = 2v~ + 2i - 2 even rows 

Adding  2i - 2 ensures that  all particles have coordinates that  differ by at 
least two. The condit ion (4) now reads 

0 < wz < wl'  < w2 < w2' < ... < w~ < w~' < m (7) 

with the coordinates on even rows pr imed;  

m = 2 n +  2 l +  1 (8) 

where l is the number  o f  uncovered edges, i.e., the free length per row. The 
number  o f  uncovered edges between the i th  and the (i + 1)th particle is 
u~+l - u, = �89 - w,) - 1 and we can therefore assign the following 
�89 - w0 - 1 coordinates to these edges: w, + 2, w~ + 4,..., w,+l - 2. 
A similar assignment can be used for the uncovered edges before the first 
particle and after the last. 
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A configuration o f  n particles and l uncovered edges can therefore be 
described by either the n coordinates w~ of  the particles or by the /coord ina tes ,  
which we denote zl ..... zz, o f  the uncovered edges. It  is advantageous to use the 
latter description because the transfer condit ion becomes 

zi' = z i _ +  1 (9) 

subject to the general constraint  

0 < zl < z2 < za < ... < zz < m (10) 

valid for all rows, and the solution to this transfer matrix is well known. 

3.2. Equivalence with Modified KDP Model 

The rules given in Eqs. (9) and (10) allow one to make a correspondence 
between a configuration o f  the hard square model and a set o f  self-avoiding 
walks on a square lattice. 

Consider the square lattice of  Fig. 3. Each row has -}(m - 1) vertices. 
The vertices are numbered as shown so that a row has either odd or even 
numbers,  and they are seen to be identical to the w coordinates f rom the hard 
square rows. A configuration o f  hard squares is mapped  onto this lattice by 
marking the vertices numbered zl .... , z~ for each row. I f  one now draws lines 
from row to row through  vertices corresponding to the ith edge, the transfer 
condit ion (9) will assure that  the result is a walk on the lattice and the 
condit ion (10) that  the walks do not  cross. 

It  is now easy to identify the model  as a t ransformat ion of  Wu ' s  modified 
K D P  model ~3-5~ except for the fact that  the boundary  conditions used here 
differ slightly f rom the ones used normally in the K D P  model,  and since the 
result is sensitive to the boundary  condition, we cannot  directly use the known 
solution o f  Wu ' s  model. I t  is shown (s> that  the modified K D P  model  is 
equivalent to a dimer covering problem on the hexagonal lattice, and it is 
well known that dimer covering problems can be solved either by the Pfaffian 

Fig. 3. Square lattice with marked vertices and six walks on the lattice, corresponding 
to the configuration of hard squares of Fig. 2. 
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method  (6-8) or by the t ransfer  matr ix  method3  m We prefer the latter since it 
allows us to pass in a s t ra ightforward way to the con t inuum limit. 

3.3. D iagona l i za t ion  

The independent  particle p rob lem tha t  arises if  one considers the t ransfer  
o f  the empty  edges (9) under  the constra int  

0 < z~ < m; i = 1, 2,..., / (11) 

has the single particle t ransfer  opera tor  ~, which is an (m - 1) x (m - 1) 
matr ix  with the elements 

re; = f l  if  [ i - - j [  = 1 (12) 
' \ 0  otherwise 

The  matr ix  has the eigenvectors 

@(z) = (2/m) 112 sin(jrrz/m); j = 1, 2 , . ,  m - 1 (13) 

and the corresponding eigenvalues 

~i = 2 cos(jrr/m); j = 1, 2 ..... m - 1 (14) 

The  definition of  the coordinates  requires, however,  that  the eigenvectors 
take values different f rom zero only on odd  or even positions,  respectively. 
To  ensure this proper ty ,  one observes the following propert ies  of  the solu- 
t ion:  

q~j(z) = ( -  1) ~+ l~m_j(z ) (15) 

~j = --?tin_ i (16) 

The functions 

~j+(z) = [~b~(z) + ~m-j(z)] = ~ - -  sin j~rZm (17a) 

4gj-(z) = ~-~ [~bj(z) - #m-j(Z)] = ~mm Cos sinJTrZm (17b) 

j = 1, 2,..., �89 - 1) 

will consequently have the propert ies  

~ ,  + (z) = ~ , , ~ , -  (z); T6j- (z )  = ~j~j+(z); j = 1 ,2  ..... �89 - 1) (18) 

6j+(z) = 0 i f z i s  even 
(19) 

~j -  (z) = 0 if z is odd  
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which are precisely the desired properties of the single-particle "eigen- 
vectors." ~+ and ~-  are of course only eigenvectors of T 2, in agreement with 
the different description of odd and even rows that the model imposes. 

The transfer problem with the constraint (11) is now solved, and the 
eigenfunction for l particles is obtained as a direct product of the single- 
particle eigenfunctions using ~+ on odd rows and ~-  on even rows. 

The solution to the transfer problem with the constraint (10) is obtained 
by constructing the/-particle eigenfunction as a determinant of the single- 
particle eigenfunctions, i.e., the-l-particle eigenfunction is (for odd rows) 

+ ( j  1, j 2  ..... j l ;  zl,..., z~) = det{~j~(z)} (20) 
1 ~<jl  < j 2  < ... < j l  <~ � 8 9  - -  1) 

where {qgj~(z)} is an l x l matrix whose element in the r th  row and sth 
column is ~j+ (zs). 

The fact that �9 + as given by (20) actually has the right form can be seen 
in several ways. One can use the fact that the condition (10) implies that the 
empty edges move as a Bose gas with an infinite delta function interaction 
together with the fact that in the linear case such a gas is equivalent with a 
free Fermi gas. (1~ One can also note that if we have a configuration of empty 
edges which fulfills (10) and then make a configuration in the next row in 

accordance with (9) but in disagreement with (10), the resulting value of �9 + 

(or (~-) would be zero. 
The number of eigenvectors given by (20) is 

which is just the dimensionality of the vector space for the system of edges 
since this is the number of configurations of l edges on �89 - 1) positions, 
i.e., we have found all the eigenvectors for the/-particle problem. 

The corresponding eigenvalues are 

l 

A( j l , j 2  ..... j l )  = 2~ ~-~ cos(jk~r/m) (21) 
k = l  

3.4. Eigenvectors for  the  Hard Squares 

Obviously, it would be more natural to express the eigenvectors in 
terms of the positions of  the hard squares rather than in terms of the positions 
of the empty edges. Also, if one wants to obtain the results for the continuum 
version of the model by taking the continuum limit of the lattice version, this 
is most easily done if the eigenvectors are expressed in terms of the positions 
of the hard squares. 
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This set of eigenvectors can be obtained in several ways. One could 
apply the Bethe ansatz method to the transfer matrix given by Eq. (27). 
One could also start from the known eigenvectors [Eqs. (20)] expressed in 
terms of the positions of the empty edges and use the fact that an allowed 
position in a row is either occupied by a hard square or an empty edge. 

The transformation to the new set of eigenvectors is therefore a simple 
relabeling of the basic states 

4j(w) = 69(]1 ..... j l ;  zl  ..... z~) (22) 

j ~ {jl , . . . , j l}; w r {zz,..., zz} 

The desired change of variables in Eqs. (20) and (21) could then be performed 
by appropriate application of  formulas for sums of trigonometric functions. 

Here we shall instead accomplish the change of variable by a reference 
to the fermion formalism. This is most easily done by application of creation 
and annihilation operators; however, since we have no other use for these 
operators, we shall only state the arguments in words. 

The empty edges can as stated in Section 3.3 be considered as free fermions 
on a lattice. The remark above implies that the hard squares can be considered 
as holes in the filled Fermi sea of empty edges. This implies that both the 
single-particle eigenvectors and the n-particle eigenvectors for the hard 
squares can be obtained trivially from the corresponding functions for the 
empty edges. However, slight care has to be taken to get the signs in agreement 
with the natural choice; this is connected with the fact that the creation and 
annihilation operators for fermions anticommute, which means that the 
sign depends on the order of  the operators. In fact, if one moves a hard 
square one position to the right of left, this causes an interchange of an odd 
number of operators when referred to the standard ordering of the creation 
operators for empty edges. This change of  sign is clearly unwanted in the 
hard square formulation. 

Therefore the correct single-particle eigenvectors for the hard squares 
become 

~ / ( w )  - ( - 1 ) ~ ~  2 . w ~  " 
a/2 [~bj(w) + ~bm_j(w)] = ~mm sin -~- sin jrrWm (23a) 

( _  1)~-  mr2 2 wTr " 
~j-(w) = - ~ [~b~.(w) - ~b,,_j(w)] - ~/----~c~ -sinJ~rwm (23b) 

j = 1 ..... � 8 9  1) 

Empty edges and hard square eigenvectors must have the same eigenvalues, 
which means that the single hard square eigenvalue will have the value 

z + l  

�9 ~:. = 1-~ ,~, (24) 
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Taking the determinant of T [see Eq. (12)] and using Eq. (14) and (16), one 
obtains 

I + 1  

F [  = 1 (25) 
j = l  

by means of which the eigenvalues of the single hard square transfer matrix 
are written 

Aj = 1/[2 cos ( j~r /m)] ;  j = 1 .... , � 8 9  - 1) (26) 

Note that we obtain the largest eigenvalue for the largest value o f j  in this 
case. 

The final proof  for the solution (23) and (26) is obtained by inspection 
of the single hard square transfer problem: Since the particle in an even row 
always must be to the right of the particle in an odd row [Eq. 7], the elements 
of the transfer matrix T are 

(10 tvw = < v, v even, w odd (27) 
otherwise 

The vth element from t acting on q~j+ is given by 

= sin j ~ w =  Ai~j- (v) (28a) {T~j § 2 sin T m 

where the sum over w runs over odd integers from one to v. Similarly, we 
have 

~ - 2  ~w ' = sin j~rw Ajq~ + (v) (28b) {T~j-(w))v = , ~ cos -~- m 

where the sum now takes the values m - 1, m - 3, etc. down to v. As 
before, ~j+(w) and ~bj-(w) are only eigenvectors to T 2. 

The solution to the n-particle problem given by (7) is generated as for 
the empty edges by forming determinants of the single-particle eigenfunctions. 

3.5. T h e r m o d y n a m i c s  of  the  Latt ice Gas 

The largest eigenvalue is 

l 

A0(n, m) = 2 z ]--[ c o s ( j ~ / m )  (29) 
j = l  

In the thermodynamic limit n --+ c~, L / n  - +  ,~', we have the following expres- 
sions: 

l /n --+ ~' - 2 d  =- ~ and m / n  --~ 2~ + 2 (30) 
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and the free energy per particle for the x coordinate is 

fx = --~ lira log A0(n, m) 

1 1 f f  xTr (31) = - f i a l ~  d x l o g c o s 2 a +  2 

Let the area be L x L and let the number of particles in the y direction be the 
same as in the x direction; the total free energy is t h e n f  = 2fx. In terms of the 
Lobachevski function 

L(x) = - log lcos t I dt (32) 

the expression for the free energy becomes 

2 [  2 e + 2 L {  arr ~] (33) 
f = - 5  a l o g 2  r~ t,2e + 21J 

For high densities one obtains the expansion (Gradshteyn and Ryzhik, (11) 
4.224,6) 

f =  (34) 
- - -  4 k ( 2 k  + 1)! ~e + 11 ] k = l  

where the B2~ are the Bernoulli numbers: 

B2 = 1/6, B~ = -1/30,  B6 = 1/42,.. 

For low densities the following expansion is valid: 

f = f l 2  log a +  1 1 + 2 k = 1 ( - 1 ) ~ 4 k ( 2 k ;  1 ) ! k ~ +  11 ] (35) 

The pressure is given by 

af(a + 2d) 1 af(a) 
P -  ~(~ + 2d) 2 -  2a + 4d Oe 

which gives the equation of state 

+ 2 d [  1 L [  err p(a + 2d) 2 _ l ~  k 2 a +  2/ 

+ ~ l o g  cos 

A low- and a high-density expansion can be obtained from (34) and (35) by 
differentiation. An isotherm is shown in Fig. 4. The most remarkable feature 
is that at close packing (a = 0) one has 

p~.~. = (1/2dfi) log 2 (37) 
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(~ p (o *  2dl 
8 

kog 2 

1/2 log 2 t 

0 ] o 
i [ I i i [ i i i [ i i~ 

0 10 20 

Fig. 4. An isotherm for hard squares on a lattice. 

This implies that the system will be in a close-packed configuration if the 
pressure is higher than po.>, and there is a phase transition of-the same type 
as the one found in the K D P  model. (a~ In the present model it is a rather 
pathological type of phase transition. 

The asymptotic value of the compressibility factor,/3p(a + 2d) 2, in the 
low-density limit is �89 + 2d) log 2; this illustrates that the model is a high- 
density model, which fails to give the ideal gas behavior at low density. 

4. THE C O N T I N U U M  M O D E L  

4.1. Equation of State 

In the continuum version of the model the equation of state is obtained 
by a scaling argument as described in Ref. 2: 

p A  1 V ' r  
- = ( 3 8 )  

N k T  1 - ( A o / A )  1/2 V ' 7  - 1 

where A0 is the volume at close packing and r = A / A o .  

4.2. Eigenvectors and Eigenvalues 

I t  is again practical to introduce reduced and this time also scaled co- 
ordinates measuring the "free volume"  available to the particles. For odd and 
even rows, respectively, they are 

u~ = (~r//)[x~ - 2 ( i -  1)d]; i =  1, 2,..., n 
(39) 

v, = (rr/l)[& -- (2i -- 1)d]; i = 1, 2 ..... n 

l = L - (2n - 1)d (40) 

The restrictions (2) for two neighboring rows 

0 <<. u l  <~ vl  <~ u2 <<. v2 ~<... ~ u. ~< v.~<~r (41) 
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can be expressed in terms of the transfer operators 

T(u, v) = duz du2 "" du~ 
3. - i  

T'(v, u) = dr1 dr2 ... dv,~ (42) 

For the independent particle model (n = 1) the solution is, by inspection, 

Cj+ = (2/7r) 1/2 cos[(j + 3)u], Cj- = (2/zr) 1/2 sin[(j + 3)v] (43) 

Tr + = (j + 3 ) -z r  Tr = (j  + 3)-xr (44) 

This result also obtains from the continuous limit for the single-particle 
eigenvectors of the lattice gas model. When one substitutesj for 3(m - 1) - j 
in Eqs. (23a) and (23b) the result is 

Cj+(w) = (2/'V/m) cos[(j + �89 (45) 

The continuous limit is obtained by letting the lattice constant go to zero 
while keeping the number of particles and the free volume fixed, 

l, m -+ o% l • lattice constant = l 

and (43) is recovered because limm~o~(~r/m)w = u for odd rows. The eigen- 
functions for the n-particle problem can again be constructed as determinants 
made by the independent particle eigenvectors: 

cpf ( j  1, j2 , . . . ,  jn ;  ul, u2 ..... u~) = det{r (u)} (46) 

j = {j l, j2,...} 

This solution fulfills the eigenvalue equations 

Tqbs+ = A s qbs- , T'Cb s- = Asqbs + (47) 

This is seen when one substitutes (42) and (46) into the left-hand side of (47): 

, 1 sin[( l+, 

(2)  *'2 s in[ (s2  + 1 ) v 2 1 -  (2)1'= s in[ (s2  + 1 )v , ] ;  

1 ...; (2 ) l /2s in [ ( sn  + 1 ) v ~ ] -  (2 ) l ' 2 s in [ ( sn  + ~ )v , - l ]  (48) 
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where the diagonal terms are used to specify the determinant. Adding the 
first row to the second and so forth yields the right-hand side of Eq. (47) with 
the eigenvalue given as 

As = ~-~ (si + � 8 9  ~-~ A~l (49) 
i = 1  ~=1 

a result that also is obtained as the continuous limit of (26). The eigen- 
functions can be shown to be orthonormal, 

dun dun_ 1 "'" 1 q)s~t 

1 ;: f: :n EE(-o e.o 
p(s) p(t) 

• [ r 1 6 2  ... ( 5 0 )  

The single-particle functions r are orthonormal and the n-fold integral thus 
equals zero when the sets of indices are different or when the permutations 
are different. The n! identical permutations each give the value one for the 
integral, so the result is 

4.3. The Entropy 

The configurational integral for h rows of n particles is 

h c----'----a 
ZN = <l iT""  T[1) = ~ Ai ~ ( l tq~)  2 (52) 

i 

where ]1) are the boundary states of the system. In the limit of infinitely 
many rows the result for the configurational integral for a row is, independent 
of the boundaries, 

lim ZN 11h = A0 = 1-~ ( j  + �89 (53) 
h,~cc ] = 0  

When the "free volume" per row is rescaled from ~r to l the result for the 
entropy per particle in the thermodynamic limit is 

s 2 lim 1 l - + 2 (54) - = - n l o g - - -  l o g  = 2 1 o g C ~  
k n ~  n 7r/'/ j = o  

where a is defined by 

lim n / l =  1/a (55) 
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The entropy of the rigid, restricted cell model for hard squares is 

s ' / k  = 2 log(cr/V'2) 

The difference 

(56) 

(s - s ' ) / k  = 2 - 2 log(rr/~/2) = 0.403 (57) 

is a r0easure of  the degree of disorder introduced by the present model. 
Beyerlein et al. ~2~ have derived an asymptotic form for the entropy in 

terms of the deviation from close packing, 

se/k = 2 log d~/2 + 2 log(r - 1) - C - 2 log(~/~ + 1) (58) 

with 

r - A 0 - ~  = (59) 

When r is substituted into Eq. (54) it is seen that the entropy of the present 
model is given by the same expression except that the constant C + 2 log 2 
comes out to be -0 .982  where the exact value is 0.260(~2~ for the unrestricted 
hard square model. Part  of  this discrepancy is explained by the cell restriction 
which keeps the center of  the particles inside the cell defined by the neighbors; 
in a regular configuration the accessible area will actually be twice the area 
given by this model adding log 2 to the entropy (Fig. 5). 

5. CORRELATION FUNCTIONS 

The absence of long-range, c rystallike order is illustrated by the follow- 
ing exact calculations of  some correlation functions. These calculations are 
similar to the calculations done by Sutherland for the ferroelectric models. ~13~ 

,=, 

Fig. 5. The total accessible area (shaded) 
for a hard square in regular surroundings 
compared to the accessible area of the 
restricted model (oblique shading). 
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5.1.  T h e  D e n s i t y  

The  probabi l i ty  of  finding a particle at u = aTr/l is 

zr 1 

= 7 r  8 u~ - r (60) 
i = 1  

in the limit h, h' e oo. The  matr ix  element is calculated in Appendix  A;  the 
result  for  g(1) is 

sin(2ga/e) 
g,~(1)(a) = 1 + 2n sin(~ra/crn) (61) 

for  odd and even rows, respectively. 
The one-part icle correlat ion along a topological  row thus dies out  in a 

damped  oscillation. 
In  the the rmodynamic  limit the result  is 

g(1)(a) = 1 + (cr/27ra)sin(27ra/cr) (62) 

Fa r  f rom the boundary ,  a>> ~, a / L - +  a constant ,  the particle density is 
uni form as shown in Fig. 6. The  particle distr ibution in real space cannot  be 
obta ined f rom this result  jus t  by substi tuting the coordinate  t r ans fo rmat ion  
(39), because there is an unknown  distr ibution of  the number  of  particles to 
the left o f  a. 

g(1) (a] 

i 

1.0 

0 
I 

I 
o _  
d 

1 2 3 & 5 

Fig. 6. The hard square density in an odd and 
an even (dashed) row close to the boundary 

[Eq. (62)1. 
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5.2. The T w o - B o d y  Corre lat ion 

The probability of finding a particle at u = aTr/l and another at u = brr/l 
on the same row is given by an expression similar to (60), 

- 2gn(l~(a)g,~(l~(b)g,~(2)(a, b; O) 

This matrix element is also calculated in Appendix A; the resulting value for 
the two-body correlation is 

[ sin[(a - b)rr/a] sin[(a + b)rr/cr] ~2 
g,~(2~(a, b; 0) = 1 - [ S ~  " - - - - b ) ~ ]  + s ~  2 F - - b ) ~ ] ]  (64) 

x [2ng.(l~(a)g.(l~(b)] -1 

In the thermodynamic limit the result is 

[ ~  ~ 
g(2~(a, b; O) = 1 - ~(a - b) sin ~r + 7r(a ~ b-) sin zr 

• [g(1)(a)gCl)(b)]-i (65) 

Far from the boundary where a >> cr, b >> or, and (a - b)/~ finite, the two- 
body correlation takes the following form (see also Fig. 7) 

g ( 2 ~ ( a - b ; O ) = l - [ ~ r ( a  ~- b) ]~s in2(~--~zr)  (66) 

g~l{a- b; O) 

1,0 

(._o~_b ] 

0 
i I I i i F I I I I 

2 3 4. 5 

Fig. 7. The two-body correlation in a row far 
from the boundaries [Eq. (66)]. 
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These results show that there is no crystal-like order in the model, but also 
that the long-range order decays very slowly. 

I f  we want to consider the two-body distribution for particles in different 
rows, we are faced with the difficulty that there is no y coordinate in this 
description. What  we can do is to give the joint distribution of particles at 
u = arr/l and at u = bTr/l in a row numbered 2z higher: 

~r- 2g,~(l~(a)g,~(1)(b)gn(2)(a, b; 2z) 

~ ~ 1  Th ~=l S(us - b-~)T2~t~=l S(ut - ?)Tn" 1 )  

in the limit h', h -+ oo. The matrix elements are given in Appendix A; there are 
only contributions from the state ~9 and the states q~i where one mode is 
excited, i.e., 

- ~" i # 0 (68)  
Ao ~g e + 

g.~ ~(a)g~ffb)g.~(a, b; 2z) 

= gn ~1 )(a)g,~(a)(b) 

[~n2a ( ~ )  ( (a+ b)~(g+ �89 ] 2~ (a - b)Tr(g + �89 + cos + cos 
9 = o o77 o-F/ 

[ n ]2~[ (a b)~(e + �89 + cos 
• t c ~  - 

(69) 

for odd and even rows, respectively. 
In the thermodynamic limit the following results obtain: 

g<2~(a, b; 2z) = 1 + dh h2~(cos Ah + cos Eh) 

x dh h-2~(cos Ah + cos Eh) [g(~)(a)g(~(b)]- ~ (70) 
- 1  

where/x - [(a - b)/@r and >2 - [(a + b)/@r. 
The integrals are calculated in Appendix B; the results are rather lengthy 

and will not be quoted here. 
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Far f rom the boundary  g(2) only depends on a - b; choosing a + b = I, 
the following simple result is obtained:  

g ( 2 ) ( a -  b ; 2 z ) =  1 + d h h S ~ c o s A h  d h h - 2 ~ c o s A h  (71) 
1 

The explicit result for z = 1 is given in Appendix B. 
We can finally give the asymptot ic  behavior of  g 2 ( a -  b; 2z). For  

A = [(a - b)/a]rr ~ oo and eventually z -+  oo but z / A  ~ --~ 0 the following 
result is obtained f rom the expansions in Appendix C:  

g(2)(a - b; 2z) 

1 /3 2cos 2 A -  sin 2A 1 /3 2 s i n 2 A  
1 + A-- ~ (1 + 82) 2 Aa (1 +/32) 3 

1 F/~ 2 cos 2 A 
+ ~-~ [ ~  +/32) 6 (121/36 -- 120fl s + 86/3 ~ -- 120/3 a + 41fl 2 -- 4) 

sin ~ & ] 
(1 + ~2)6 (5P ~ - 54fl 4 + 21] 32) (72) 

where fl -- 2z /A .  

For  finite A and z --> 0 the result (66) is again obtained�9 

A P P E N D I X  A.  M a t r i x  E l e m e n t s  

= . . . . . . . . . .  1 dul  du~ ( -  1) ~ + ' '  [r 
n T  �9 p ( j )  p ' ( k )  

x 3(us - ~ (A.1) 

because of  the symmetry in u~. Exactly one integration is not  performed, but 
the u - 1 others give 8j~.~. So the u - 1 indices have to be the same and 
have the same permutat ion,  too. 

For  the two remaining indices different (e # g, where g is in the ground 
state 00, g = 0,..., n - 1, and e is in an excited state qbi, e = n, n + 1,...) the 
result is 

qSo ~ 3(us - c~) qbi~ = q~o(c0~e(~); i # 0 (A.2) 
S = I  
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But for all indices equal (e = g) there is a contribution from all n! identity 
permutations o f j  and k; so g can take all values in as0, 

n - 1  n - 1  1 
~2(~) = n_+ ~ _ c o s Z a ( g + � 8 9  (A.3) 

g=0 7T g=0 77" 

(the plus sign for odd rows) and 

)= ~o 8(u~ - ~) ~0 n + __ (A.4) 
~=1 r r -  2 s in~  

(Gradshteyn and Ryzhik, (11) 1.341). The matrix element 

*o a(u~ - ~)a(u,  - ~)  ~o  

can be written analogous to Eq. (A.1). Exactly two integrations are not per- 
formed, but the n - 2 others give 8mk~. So these n - 2 indices have to be 
equal and have the same permutation, too. For a given permutation ofji there 
will be a term 

where 

(A.5) 

"J)}=O, 1,.. . ,n-1; fi # j f  

because of the sum over the coordinates. So the sum over permutations offi 
will just give a factor n! and the permutation of k will give two terms: 

~-I n-i 

~ [~2(c~)$12(~ ) - q~(~)$,(~)q~z(~)$~(~)] (A.6) 
f 

Since the last term, which can be written as 

n - 1  

(1/rr) ~ { + cos[(c~ + fl)(i + �89 + cos[(~ - ,8)(i + 1)1} (A.7) 
i = 0  

can be calculated by the same sum formula as above, the matrix element is 

(q~o ~ 8(u~ - c08(u~ - /3 )  qbo) 

= [n _+ ~_~ ~ ]  [n + s i n  2nc~ ] - 2"-~--s]-nSin 2n/?~j] 

[ sin[(~ -/?)__n~) _ sin[(c~ +/?)n] ] 2 
- L:27 + 2~-~sin~ 7 ~)J (A.8) 
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A P P E N D I X  B 

Integrals from g(2)(a, b, 2z): 

f [  (2z)! (-1)~ ~ (-a)~ " ~ , 21 /' dx x 2~ cos ax = sin | a  + ~ri| (B. 1) 
i=0 

(Gradshteyn and Ryzhik,(11)2.633,2); 

f S  COS a x  dx x - 2 Z  

a2~-2(-l)~-l[2~-2J!(-1)~ ( 1 ) ~ -  1)! L aj ~Trj ] 
- j--~o cos a + - asi(a) (B.2) 

(Gradshteyn and Ryzhik, (1~) 2.639,3). These integrals give the expression for 
the product in Eq. (70) which in the case a + b = I reads [Eq. (71)] 

2~ ,,  1 ( 2 1  ) g(2)(a - b;2z) = 2z si(a) ~ ( - a )  i-277 sin a + 7ri 
~,=0 

- z ~  ~ (-1)~+Ja ~-j-3 sin 2a + (i+j)~r 
1 = o  j = o  

2z- 2 E ( j -  1/2) + z a2k 
( : k - j +  1), (S.3) 

where 2k + 1 = i + j. For z = 1 the result is 

g(2)(a--b;2)=l+2si(A)[si~ ? -  c ~  l a  2sinA sin2AAa 

cos 2& cos 2& sin 25 1 
+ &------5--- + A ----5-- + 2----S-- + A--5 (B.4) 

where A ~ [(a - b)/e]zr. 

A P P E N D I X  C 

Asymptotic expansion of the correlation function Eq. (71): 

dhh-2~c~ = -s Jo dx 1 + cosx 

s n fo ( A dx 1 + sinx (C.1) 

Note that we can cut the integrals at A in the asymptotic expansion, since 

l fa~  dx (1 + ~ )  - 2 ~ co sx <s fa l  ~ dx(X +~-)-2~ = O(e-20 (C.2) 



A Cell Model for Liquids 469 

Similarly we find for the other integral 

dh h -2~ cos Ah = dx (1 - x) 2~ cos(A -- Ax) 

and the two integrals equal 

+ _  ~ (, 

where the upper sign is for the upper integral. 
The asymptotic behavior for A and 2z-+oo is found by rewriting and 

expanding the logarithm and part  of  the exponent to second order, 

~ d x c o s x e x p [ T - 2 z l n ( l + - ~ ) ]  (and equivalent for sin) 

A Z 2 

~ fl dx (cosx) (exp-  ~ x )  (1 + z 2 -  ~---~3x3+~--~x ~ x  (C.4) 

Since we can extend these integrals to infinity, by the argument f rom Eq. 
(C.2), the integrals are given in Ref. 11 (2.663,1-3; 2.667,7-8; 3.944,5-6). 
We finally find with the notation 

fl = 2z/A, t = arctan/3 -1, s = 1 +/32 (C.5) 

cos t = p/s lj2, sin t = 1Is 1/~ 

that, for example, 

fo ~ dx x)x3e -Bx = 3! -2 4t = 3! -4(8/34 8fi2s s 2) (cos S COS S + 

where cos 4t has been rewritten in powers of  sin t and cos t. Collecting 
terms up to second order gives the expression (72). 
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